Abstract

One of the major ingredients of modelling the mechanical behaviour of superalloys is the knowledge of dislocation densities and strain distribution. Both can be measured using post mortem BF TEM and CBED, but such methods do not allow following their variations during a test. The aim of the present work is to investigate the usefulness of in situ X-Ray Three Crystal Diffractometry (TCD) to measure the density and distribution of dislocations within a rafted superalloy, i.e. during stage II of high temperature creep. As the instrument contribution is very low, the two-peaked experimental profiles are representative of the lattice parameter distribution within the material. The profiles were measured within bulk specimens at the BW5 high energy beamline Hasylab (DESY), during high temperature (1050°C to 1180°C) tests under loads between 0 MPa and 300 MPa. The peak shapes were observed to change with varying experimental conditions. The peak width follows different patterns under low and high stress, i.e. with low and high strain rates. The distribution of elastic strains was calculated by assuming two main contributions: dislocation segments trapped at the γ/γ’ interfaces in a more or less regular network, and dislocations moving within the γ’ rafts. A comparison between experimental and simulated peaks shows that several features of their behaviour can be explained: the absolute magnitude of the peak width, the observed decrease of the peak width under low loads with increasing interfacial dislocation densities. The larger increase in the width of the γ’ peak under high load (and strain rate) may be attributed to a dislocation density within the 1013 m-2 range within the rafts. The present results are presently being cross-checked by post mortem TEM observations.

Highlights

  • Single-crystal nickel-based superalloys are currently widely used in aircraft engines for their creep resistance under tension at high temperature

  • The aim of the present paper is to investigate the effect of the experimental conditions on the shape of the Three Crystal Diffractometry (TCD) profiles, to link changes in these profiles and changes in the order of the interfacial dislocation array and in the dislocation densities within that phase, and the mechanical behavior of the rafts

  • It remains high before slowly returning to its initial value: γ’ strain rate depends on the stress, and on a parameter which varies on longer timescales

Read more

Summary

Introduction

Single-crystal nickel-based superalloys are currently widely used in aircraft engines for their creep resistance under tension at high temperature. These alloys are two-phased materials, with a disordered fcc γ matrix containing a high relative concentration of L12 ordered γ’ precipitates. The microstructure changes to a rafted one [1], ie the microstructure is a semi-coherent multilayer of the two phases γ and γ’ perpendicular to the [001] tensile axis It has been shown [2,3,4,5] that in situ diffraction methods using neutrons or high energy synchrotron radiation, especially Three Crystal Diffractometry (TCD) could give some insight on stresses and strain rates within the material. It might be possible to get some insight on the microstructure (dislocation densities)

Objectives
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call