Abstract

Abstract Based on the dynamical theories of water waves and Mindlin thick plates, the diffraction of surface waves by a floating elastic plate is presented by using the Wiener–Hopf technique. Firstly, the problem is related to a wave guide in water of finite depth, which is analysed to determine the poles. The resulting hybrid boundary value problem is reduced to solving an infinite system of linear algebraic equations. The results obtained are compared with those calculated by an alternative analysis, and with experimental data. Finally, the effects of the geometric and physical parameters on the distribution of deflection and bending moments in plates are analysed and discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call