Abstract

We describe a method of modeling seismic waves interacting with single liquid‐filled large cracks based on the Kirchhoff approximation and then apply it to field data in an attempt to estimate the size of a hydraulic fracture. We first present the theory of diffraction of seismic waves by fractures using a Green's function representation and then compute the scattered radiation patterns and synthetic seismograms for fractures with elliptical and rectangular shapes of various dimensions. It is shown that the characteristics of the diffracted wavefield from single cracks are sensitive to both crack size and crack shape. Finally, we compare synthetic waveforms to observed waveforms recorded during a hydraulic fracturing experiment and are able to predict successfully the size of a hydraulically induced fracture (length and height). In contrast to previously published work based on the Born approximation, we model both phases and amplitudes of observed diffracted waves. Our modeling has resulted in an estimation of a crack length 1.1 to 1.5 times larger than previously predicted, whereas the height remains essentially the same as that derived using other techniques. This example demonstrates that it is possible to estimate fracture dimensions by analyzing diffracted waves.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call