Abstract

This paper presents a numerical method for solving linearized water-wave problems with oscillatory time dependence. Specifically it considers the diffraction problem for oblique plane waves incident upon an infinitely long fixed cylinder on the free surface. The numerical method is based on a variational principle equivalent to the linearized boundary-value problem. Finite-element techniques are used to represent the velocity potential; and the variational principle is used to determine the unknown coefficients in the solution throughout the fluid domain. To illustrate this method, reflexion and transmission coefficients and the diffraction forces and moment are computed for oblique waves incident upon a vertical flat plate, a horizontal flat plate and rectangular cylinders, where the comparison is made with the existing results by others. Also considered is the associated sinuous forced-motion problem, where comparison is made with the results for a circular cylinder obtained by Bolton & Ursell (1973).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.