Abstract

A comparison of three methods of solution for the problem of scattering and diffraction of a transverse electric (TE) polarized plane wave by an infinite circular cylinder having an infinite axial slot is presented. In one method of solution, the aperture field integral equation (AFIE) method, the fields in and around the cylinder are found from the aperture <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</tex> -field and the Green's functions for the interior and exterior of a cylinder. In the other two methods, the fields are determined from the surface current, which is obtained by solution of the <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">H</tex> -field integral equation (HFIE) or the <tex xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">E</tex> -field integral equation (EFIE). The field in the aperture of the cylinder is found from the three methods, and the advantages and disadvantages of each method of solution are discussed. In addition, it is also shown that for shell thickness less than 1/20 of a wavelength, the aperture fields do not differ signifcantly from those of an infinitely thin shell cylinder.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.