Abstract

The solution to the scattering of an E-polarized plane wave from perfectly conducting infinite cylinders having arbitrary cross-sections and a finite number of edges is constructed by the polynomial expansions-Fourier transforms (PE-FT) method. The proposed method is based on the idea of reformulation of the integral equation in terms of the dual series equations with the trigonometrical kernel and the use of the properties of the orthogonal Gegenbauer polynomials. The initial problem is reduced to the problem of scattering from N bodies. As the result, the integral equation of the first kind with logarithmic singularity is reduced to N coupled systems of linear algebraic equations of the second kind. Particular cases of the circular cylindrical strip and the bodies with circular cylindrical facets are considered and analysis of scattering from the obstacles is presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.