Abstract

The unsteady, two-dimensional flowfield resulting from the interaction of a moving planar shock wave with a compression corner is determined using a second-order, discontinuity-fitting, finite-difference approach. The time-dependent Euler equations are transformed to normalize the distance between the body and peripheral shock and to include the existing self-similar property of the flow. The resulting set of partial differential equations in conservation-law form is then solved in a time-dependent fashion using MacCormack's scheme. The vortical singularity, which lies on the body surface, and the single reflected shock are both treated as discontinuities in the numerical procedure. The results of the numerical simulation compare quite favorably with existing experimental interferograms and yield better flowfield resolution than previous first-order, shock-capturing, numerical solutions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.