Abstract
We consider a configuration where a planar shock reflects and diffracts as it hits a semi-infinite rigid screen. The diffracted reflected shock meets the diffracted expansion wave, created by the incident shock that does not hit the screen, and changes continuously from a shock into an expansion. The governing equation changes its type and becomes degenerate as the wave changes continuously from a shock to an expansion. Furthermore the governing equation has multiple free boundaries (transonic shocks) and an additional degenerate sonic boundary (the expansion wave). We develop an analysis to understand the solution structure near which the shock strength approaches zero and the shock turns continuously into an expansion wavefront, and show the existence of the global solution to this configuration for the nonlinear wave system. Moreover we provide an asymptotic analysis to estimate the position of the change of the wave, and present intriguing numerical results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.