Abstract

The kinematic approximation method has shown that the peak intensity and the full width at half maximum (FWHM) of stepped surfaces exhibit an oscillatory behavior for changing incident energy. This paper generalizes the kinematic approximation to an ( N × 1) reconstructed surface with a distribution of various types of lateral displacements at a step. A particular solution of this model we call the fixed point solution, yields a clear intuitive understanding of these oscillations as well as an exact solution for the step density of any surface. The specific examples of (5 × 1) and (2 × 1) reconstruction are examined to show the striking differences between the reconstructed surface diffraction patterns. These differences make an examination of the half-maximum (HM) intensity position a powerful tool to determine the surface structure for any incommensurate stepped surface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.