Abstract

Objective To introduce a novel X-ray technology, diffraction-enhanced X-ray imaging (DEI), in its early stages of development, for the imaging of articular cartilage.DesignDisarticulated and/or intact human knee and talocrural joints displaying both undegenerated and degenerated articular cartilage were imaged with DEI. A series of three silicon crystals were used to produce a highly collimated monochromatic X-ray beam to achieve scatter-rejection at the microradian level. The third crystal (analyser) was set at different angles resulting in images displaying different characteristics. Once the diffraction enhanced (DE) images were obtained, they were compared to gross and histological examination.Results Articular cartilage in both disarticulated and intact joints could be visualized through DEI. For each specimen, DE images were reflective of their gross and histological appearance. For each different angle of the analyser crystal, there was a slight difference in appearance in the specimen image, with certain characteristics changing in their contrast intensity as the analyser angle changed.ConclusionsDEI is capable of imaging articular cartilage in disarticulated, as well as in intact joints. Gross cartilage defects, even at early stages of development, can be visualized due to a combination of high spatial resolution and detection of X-ray refraction, extinction and absorption patterns. Furthermore, DE images displaying contrast heterogeneities indicative of cartilage degeneration correspond to the degeneration detected by gross and histological examination.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.