Abstract

The diffraction efficiency (DE) of guided optical waves (GOWs) and the magneto-optic (MO) −3 dB bandwidth are key parameters in MO Bragg cells. To improve the diffraction performance, the MO Stokes interaction between magnetostatic forward volume waves (MSFVWs) and GOWs are studied by use of the coupledmode theory in metal clad yttrium-iron-garnet (YIG) waveguides. Our analysis shows that, by adjusting the spacing of the metal layer from the ferrite surface, (1) the DE can be further increased by 7.32 dB compared with that of the inclined magnetization, but the MO bandwidth will be dropped down to the low level in the optimizing waveguide configuration; (2) when the DE and the MO bandwidth should be considered synthetically, a DE improvement of 3.9 dB with a bandwidth about 560 MHz is achieved corresponding to the large gainbandwidth product. Thus, the YIG waveguide coated with perfect metal layers can be used to improve the performance of MO Bragg cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call