Abstract

In this paper we present a systematic approach for analytical description of SASE FEL in the linear mode. We calculate the average radiation power, radiation spectrum envelope, angular distribution of the radiation intensity in far zone, degree of transverse coherence etc. Using the results of analytical calculations presented in reduced form, we analyze various features of the SASE FEL in the linear mode. The general result is applied to the special case of an electron beam having Gaussian profile and Gaussian energy distribution. These analytical results can be serve as a primary standard for testing the codes. In this paper we present numerical study of the process of amplification in the SASE FEL using three-dimension time-dependent code FAST. Comparison with analytical results shows that in the high-gain linear limit there is good agreement between the numerical and analytical results. It has been found that even after finishing the transverse mode selection process the degree of transverse coherence of the radiation from SASE FEL visibly differs from unity. This is consequence of the interdependence of the longitudinal and transverse coherence. The SASE FEL has poor longitudinal coherence which develops slowly with the undulator length thus preventing a full transverse coherence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.