Abstract

Conventional diffraction calculations typically employ complex Fourier transforms in which the source and target fields are represented by complex values. However, this approach is inefficient for certain applications. To address this problem, this study introduces diffraction calculations for three fields: real-to-complex, complex-to-real, and real-to-real. These calculations utilize a real-valued fast Fourier transform and Hermite symmetry, enabling accelerated computation by eliminating half of the spectra. This study also demonstrates the practical applications of these diffraction calculations. These applications include image reproduction in digital holography, speckle reduction in holographic projection, and accelerated hologram computation in holographic displays.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.