Abstract

Summary We study the problem of diffraction by a right-angled no-contrast penetrable wedge by means of a two-complex-variable Wiener–Hopf approach. Specifically, the analyticity properties of the unknown (spectral) functions of the two-complex-variable Wiener–Hopf equation are studied. We show that these spectral functions can be analytically continued onto a two-complex dimensional manifold, and unveil their singularities in C2. To do so, integral representation formulae for the spectral functions are given and thoroughly used. It is shown that the novel concept of additive crossing holds for the penetrable wedge diffraction problem, and that we can reformulate the physical diffraction problem as a functional problem using this concept.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.