Abstract

This paper deals with the singular behavior of the diffraction of transverse magnetic (TM) waves by a perfectly conductive triangular periodic surface at a low grazing limit of incidence. The wave field above the highest excursion of the surface is represented as a sum of Floquet modes with modified diffraction amplitudes, whereas the wave field inside a triangular groove is written as a sum of guided modes with unknown mode amplitudes. Then, two sets of equations are derived for such amplitudes. From the equation sets, all the amplitudes are analytically shown to vanish at a low grazing limit of incidence. From this fact, it is concluded analytically that no diffraction takes place and only reflection occurs at a low grazing limit of incidence for any period length and any triangle height. This theoretical result is verified by a numerical example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.