Abstract

License plate recognition is a pivotal challenge in surveillance applications, predominantly due to the low resolution and diminutive size of license plates, which impairs recognition accuracy. The advent of AI-based super-resolution techniques offers a promising avenue to ameliorate the resolution of such images. Despite the deployment of various super-resolution methodologies, including Convolutional Neural Networks (CNNs) and Generative Adversarial Networks (GANs), the quest for satisfactory outcomes in license plate image enhancement persists. This paper introduces “DiffPlate”, a novel Diffusion Model specifically tailored for license plate super-resolution. Leveraging the unprecedented capabilities of Diffusion Models in image generation, DiffPlate is meticulously trained on a dataset comprising low-resolution and high-resolution pairs of Saudi license plates, curated for our surveillance application. Our empirical analysis substantiates that DiffPlate markedly eclipses state-of-the-art alternatives such as SwinIR and ESRGAN, evidencing a 26.47% and 37.32% enhancement in Peak Signal-to-Noise Ratio (PSNR) against these benchmarks, respectively. Furthermore, DiffPlate achieves superior performance in terms of Structural Similarity Index (SSIM), with a 4.88% and 16.21% improvement over SwinIR and ESRGAN, respectively. Human evaluative studies further corroborate that images refined by DiffPlate were preferred 92% more frequently compared to those processed by other algorithms. Through DiffPlate, we present a new solution to the license plate super-resolution challenge, demonstrating significant potential for adoption in real-world surveillance systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.