Abstract
The performance of a newly designed evolutionary algorithm is usually evaluated by computational experiments in comparison with existing algorithms. However, comparison results depend on experimental setting; thus, fair comparison is difficult. Fair comparison of multi-objective evolutionary algorithms is even more difficult since solution sets instead of solutions are evaluated. In this paper, the following four issues are discussed for fair comparison of multi-objective evolutionary algorithms: (i) termination condition, (ii) population size, (iii) performance indicators, and (iv) test problems. Whereas many other issues related to computational experiments such as the choice of a crossover operator and the specification of its probability can be discussed for each algorithm separately, all the above four issues should be addressed for all algorithms simultaneously. For each issue, its strong effects on comparison results are first clearly demonstrated. Then, the handling of each issue for fair comparison is discussed. Finally, future research topics related to each issue are suggested.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.