Abstract

It has been suggested that dark matter particles are strongly interacting, composite, macroscopically large objects made of well known light quarks (or antiquarks). In doing so it is argued that these compact composite objects (CCOs) provide natural explanations of observed data, such as the 511 keV line from the bulge of our galaxy observed by INTEGRAL, and the excess of diffuse gamma rays in the 1-20 MeV band observed by COMPTEL. Here we argue that the atmospheres of positrons that surround CCOs composed of di-antiquark pairs in the favored color-flavor-locked superconducting state are sufficiently dense as to place stringent limits on the penetration depth of interstellar electrons incident upon them, resulting in an extreme suppression of previously estimated rates of positronium formation, and hence in the flux of 511 keV photons resulting from their subsequent decays. The associated rate of direct electron-positron annihilations, which yield the MeV photons postulated to explain the 1-20 MeV photon excess, is also suppressed. We also discuss how even if a fraction of positrons somehow penetrated the surface of the CCOs, the extremely strong electric fields generated from the bulk antiquark matter would result in the destruction of positronium atoms long before they decay.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.