Abstract
Serum- and glucocorticoid-regulated kinase (SGK) is a serine kinase that has a catalytic domain homologous to that of Akt, but lacks the pleckstrin homology domain present in Akt. Akt reportedly plays a key role in various cellular actions, including glucose transport, glycogen synthesis, DNA synthesis, anti-apoptotic activity, and cell proliferation. In this study, we attempted to reveal the different roles of SGK and Akt by overexpressing active mutants of Akt and SGK. We found that adenovirus-mediated overexpression of myristoylated (myr-) forms of Akt resulted in high glucose transport activity in 3T3-L1 adipocytes, phosphorylated glycogen synthase kinase-3 (GSK3) and enhanced glycogen synthase activity in hepatocytes, and the promotion of DNA synthesis in interleukin-3-dependent 32D cells. In addition, stable transfection of myr-Akt in NIH3T3 cells induced an oncogenic transformation in soft agar assays. The active mutant of SGK (D-SGK, substitution of Ser422 with Asp) and myr-SGK were shown to phosphorylate GSK3 and to enhance glycogen synthase activity in hepatocytes in a manner very similar to that observed for myr-Akt. However, despite the comparable degree of GSK3 phosphorylation between myr-Akt and d-SGK or myr-SGK, d-SGK and myr-SGK failed to enhance glucose transport activity in 3T3-L1 cells, DNA synthesis in 32D cells, and oncogenic transformation in NIH3T3 cells. Therefore, the different roles of SGK and Akt cannot be attributed to ability or inability to translocate to the membrane thorough the pleckstrin homology domain, but rather must be attributable to differences in the relatively narrow substrate specificities of these kinases. In addition, our observations strongly suggest that phosphorylation of GSK3 is either not involved in or not sufficient for GLUT4 translocation, DNA synthesis, or oncogenic transformation. Thus, the identification of substrates selectively phosphorylated by Akt, but by not SGK, may provide clues to clarifying the pathway leading from Akt activation to these cellular activities.
Highlights
PI1 3-kinase has been implicated in the regulation of numerous cellular processes [1,2,3]
We found that adenovirus-mediated overexpression of myristoylated forms of Akt resulted in high glucose transport activity in 3T3-L1 adipocytes, phosphorylated glycogen synthase kinase-3 (GSK3) and enhanced glycogen synthase activity in hepatocytes, and the promotion of DNA synthesis in interleukin-3-dependent 32D cells
It was reported that insulin stimulation induces the translocation of Akt to the membrane fraction, but that this does not occur with mutant Akt lacking the PH domain or with Serum- and glucocorticoid-regulated kinase (SGK) [18]
Summary
Study, we investigated whether SGK induces the cellular functions known to be induced by activated Akt. Akt activation reportedly plays a key role in glucose metabolism, including increased glycogen synthase and GLUT4 translocation to the plasma membrane, as well as in inhibition of apoptosis and promotion of cell growth The induction of these cellular functions by Akt has been well demonstrated, and they are induced by overexpressing myr-Akt [10, 11, 22]. This is the first report clearly demonstrating the different roles of Akt and SGK Interestingly, these differences are attributable not to the presence or absence of the PH domain responsible for membrane targeting, but very possibly to differences in the substrate specificities of the kinase domains of SGK and Akt
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.