Abstract
Na(+)-dependent excitatory amino acid transporters (EAATs) normally function to remove extracellular glutamate from brain extracellular space, but EAATs can also increase extracellular glutamate by reversal of uptake. Effects of inhibitors on EAATs can be complex, depending on cell type, whether conditions favor glutamate uptake or uptake reversal and whether the inhibitor itself is a substrate for the transporters. The present study assessed EAAT inhibitors for their ability to inhibit glutamate uptake, act as transporter substrates and block uptake reversal in astrocyte and neuron cultures. L-threo-beta-hydroxyaspartate (L-TBHA), DL-threo-beta-benzyloxyaspartate (DL-TBOA), L-trans-pyrrolidine-2,4-dicarboxylic acid (L-trans-2,4-PDC) (+/-)-cis-4-methy-trans-pyrrolidine-2,4-dicarboxylic acid (cis-4-methy-trans-2,4-PDC) and L-antiendo-3,4-methanopyrrolidine-2,4-dicarboxylic acid (L-antiendo-3,4-MPDC) inhibited L-[14C]glutamate uptake in astrocytes with equilibrium binding constants ranging from 17 microM (DL-TBOA and L-TBHA) - 43 microM (cis-4-methy-trans-2,4-PDC). Transportability of inhibitors was assessed in astrocytes and neurons. While L-TBHA, L-trans-2,4-PDC, cis-4-methy-trans-2,4-PDC and L-antiendo-3,4-MPDC displayed significant transporter substrate activities in neurons and astrocytes, DL-TBOA was a substrate only in astrocytes. This effect of DL-TBOA was concentration-dependent, leading to complex effects on glutamate uptake reversal. At concentrations low enough to produce minimal DL-TBOA uptake velocity (< or = 10 microM), DL-TBOA blocked uptake reversal in ATP-depleted astrocytes; this blockade was negated at concentrations that drove substantial DL-TBOA uptake (> 10 microM). These findings indicate that the net effects of EAAT inhibitors can vary with cell type and exposure conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.