Abstract
AbstractObligate neotenic salamanders die if forced to metamorphose. We suggest that this can be explained by assuming: 1) their “excess” DNA is “junk” DNA; 2) the “adult” specifying portion of the DNA becomes junk DNA and is available for repeated duplication. This suggests a “new” junk DNA molecular clock. We obtain remarkable agreement in “predicting” the amount of DNA per nucleus in present day non‐obligate neotene salamanders from this molecular clock. These observatons are consistent with the idea that the development of these animals is describable in terms of differentiation trees whose branches (gene cascades) corresponding to adult somatic tissues accumulate deleterious mutations over evolutionary time. We show that the amount of DNA per nucleus increases linearly with the phylogenetic age of salamander families. The lack of constraints by natural selection, on unused adult branches, may account for the large amount of so‐called “junk DNA” in obligate neotenic salamanders. The effects of this excess DNA, via increased cell size, suggest a positive feedback, ecophysiological explanation for such junk DNA: adaptation to cool water environments is enhanced by the lower metabolism associated with more DNA, larger cells and slower developmental time.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.