Abstract

BackgroundEmbryonic Sertoli cells (eSCs) play an important role in sex determination and in male gonad development which makes them a very useful cell type for therapeutic applications. However, the deriving mechanism of Sertoli cells has been unclear and challenging to create a large number of quality eSCs. Therefore, this study aimed to create the eSCs induced from mouse embryonic stem (mES) cells by regulating defined factors and to explore the relevant regulatory mechanism.MethodsSix inducing factors, Sry, Sox9, SF1, WT1, GATA4, and Dmrt1, were respectively transduced into mES cells by lentiviral infection according to the experimental design. The test groups were identified by development stage-specific markers, AMH, Emx2, SF1, and FasL, using flow cytometry. Induced eSCs were determined by FasL and AMH biomarkers under immunofluorescence, immunocytochemistry, and flow cytometry. Moreover, the pluripotency markers, gonad development-related markers, epithelial markers and mesenchymal markers in test groups were transcriptionally determined by qPCR.ResultsIn this study, the co-overexpression of all the six factors effectively produced a large population of eSCs from mES cells in 35 days of culturing. These eSCs were capable of forming tubular-like and ring-like structures with functional performance. The results of flow cytometry indicated that the upregulation of GATA4 and WT1 contributed to the growth of somatic cells in the coelomic epithelium regarded as the main progenitor cells of eSCs. Whereas, SF1 facilitated the development of eSC precursor cells, and Sry and Sox9 promoted the determination of male development. Moreover, the overexpression of Dmrt1 was essential for the maintenance of eSCs and some of their specific surface biomarkers such as FasL. The cellular morphology, biomarker identification, and transcriptomic analysis aided in exploring the regulatory mechanism of deriving eSCs from mES cells.ConclusionConclusively, we have elucidated a differentiation roadmap of eSCs derived from mES cells with a relevant regulatory mechanism. Through co-overexpression of all these six factors, a large population of eSCs was successfully induced occupying 24% of the whole cell population (1 × 105 cells/cm2). By adopting this approach, a mass of embryonic Sertoli cells can be generated for the purpose of co-culture technique, organ transplantation, gonadal developmental and sex determination researches.

Highlights

  • Sertoli cells, the first male-specific cells generated during embryo development which play an important role in male determination and in male gonadal development, have been widely studied regarding their functions in immunosuppression, male reproductive development, and co-culture technique [1,2,3]

  • Mitomycin-treated TM4 cells can replace mouse embryo fibroblasts (MEFs) as feeder cells of mouse embryonic stem (mES) cells to improve the cells’ pluripotency and gonadal differentiation potential Generally, mES cells require MEFs as feeder cells to recover from nitrogen cryopreservation and to stimulate the mES growth in vitro

  • MES cells cultured on MEF feeder layers usually have relatively poor growth rates, low cell resuscitation rates after liquid nitrogen cryopreservation, and lose pluripotency over time [49, 50]

Read more

Summary

Introduction

The first male-specific cells generated during embryo development which play an important role in male determination and in male gonadal development, have been widely studied regarding their functions in immunosuppression, male reproductive development, and co-culture technique [1,2,3]. Embryonic Sertoli cells (eSCs) play an important role in sex determination and in male gonad development which makes them a very useful cell type for therapeutic applications. The deriving mechanism of Sertoli cells has been unclear and challenging to create a large number of quality eSCs. this study aimed to create the eSCs induced from mouse embryonic stem (mES) cells by regulating defined factors and to explore the relevant regulatory mechanism

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call