Abstract

Skeletal muscle experiences a decline in lean mass and regenerative potential with age, in part due to intrinsic changes in progenitor cells. However, it remains unclear how age-related changes in progenitors manifest across a differentiation trajectory. Here, we perform single-cell RNA sequencing (RNA-seq) on muscle mononuclear cells from young and aged mice and profile muscle stem cells (MuSCs) and fibro-adipose progenitors (FAPs) after differentiation. Differentiation increases the magnitude of age-related change in MuSCs and FAPs, but it also masks a subset of age-related changes present in progenitors. Using a dynamical systems approach and RNA velocity, we find that aged MuSCs follow the same differentiation trajectory as young cells but stall in differentiation near a commitment decision. Our results suggest that differentiation reveals latent features of aging and that fate commitment decisions are delayed in aged myogenic cells invitro.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.