Abstract

The effects of pH and lactic acid or acetic acid concentration on Listeria monocytogenes inactivation were studied in brain heart infusion broth using a three strain mixture. Combinations of lactic acid/sodium lactate and acetic acid/sodium acetate were used to achieve concentrations of 0.1, 0.5, 1.0, and 2,0M in conjunction with pH values of 4.0, 5.0, 6.0, and 7.0. Cultures adjusted with HCl to pH 3.0 to 7.0 in 0.5 pH unit intervals were used as 0.0M controls. Each pH/concentration combination was inoculated to a level of 108 CFU/ml and incubated at 28°C for up to 60 d. Bacterial populations were determined periodically by plate counts. Inactivation was exponential after an initial lag period. Survivor curves (log# versus time) were fitted using a linear model that incorporated a lag period. The model was subsequently used to calculate D values and “time to a 4-D (99.99%) inactivation” (t4-D); t4-D values were directly related to pH and inversely related to acid concentration. At acid/pH combinations that supported growth, the level of the organism increased slightly (2- to 10-fold) before declining. In the HCl-adjusted controls with pH's ≤5.5, the rate of inactivation was linearly related to pH. In the presence of the monocarboxylic acids, the duration of the lag period and the rate of inactivation were dependent on the pH, as well as the identity and concentration of acid. 4-D inactivation times were related to the level of undissociated lactic and acetic acids. That relationship was described by the equations, t4-D = exp (−0.1773*LA0.5 + 7.3482) and t4-D = exp (−0.1468*AA0.5 + 7.3905) for lactic and acetic acids, respectively, where LA and AA are mM of undissociated acid. These relationships were used in conjunction with the Henderson-Hasselback equation to develop a model for predicting the rate of inactivation as a function of pH and total organic acid concentration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.