Abstract
Isomers cannot be differentiated from each other solely based on accurate mass measurement of the compound. A liquid chromatography/quadrupole time-of-flight mass spectrometry (LC/Q-TOFMS) method was used to systematically fragment a large group of different isomers. Two software programs were used to characterize in silico mass fragmentation of compounds in order to identify characteristic fragments. The software programs employed were ACD/MS Fragmenter (ACD Labs Toronto, Canada), which uses general fragmentation rules to generate fragments based on the structure of a compound, and SmartFormula3D (Bruker Daltonics), which assigns fragments from a mass spectra and calculates the molecular formulae for the ions using accurate mass data. From an in-house toxicology database of 874 drug substances, 48 isomer groups comprising 111 compounds, for which a reference standard was available, were found. The product ion spectra were processed with the two software programs and 1-3 fragments were identified for each compound. In 82% of the cases, the fragment could be identified with both software programs. Only 10 isomer pairs could not be differentiated from each other based on their fragments. These compounds were either diastereomers or position isomers undergoing identical fragmentation. Accurate mass data could be utilized with both software programs for structural elucidation of the fragments. Mean mass accuracy and isotopic pattern match values (SigmaFit; Bruker Daltonics Bremen, Germany) were 0.9 mDa and 24.6 mSigma, respectively. The study introduces a practical approach for preliminary compound identification in a large target database by LC/Q-TOFMS without necessarily possessing reference standards.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.