Abstract

A series ofN,N-disubstituted piperazines were synthesized containing the structural elements of meta-chlorophenylpiperazine (mCPP) in combination with methoxybenzyl-, and dimethoxybenzyl substituents to yield nineN,N-disubstituted piperazine compounds. These nine potential designer-like drug analogs were prepared based on common designer trends and regioisomeric differentiation was based on gas chromatography-mass spectrometry (GC–MS) and gas chromatography-vapor phase infrared (GC–vpIR) studies.The compounds in this study have not been reported as drugs of abuse at this time. However, commercial availability of precursor chemicals including mCPP suggests the possibility of further designer exploration. Capillary GC separation showed the regioisomers to elute according to the position of aromatic ring substitution and/or the degree of substituent crowding on the aromatic ring. Numerous electron ionization (EI) mass spectral fragment ions occur via processes initiated by one of the two nitrogen atoms of the piperazine ring. The major EI-MS fragment ions observed in all nine spectra occur at m/z 195 from the loss of the substituted benzyl radical and the cation atm/z56 (C3H6N)+from the piperazine ring. Unique radical cations at m/z 136 and m/z 152 are characteristic of the 2,3- and 3,5-dimethoxybenzyl isomers, respectively. The vapor phase infrared spectra for all nine compounds show a strong absorption band in the 1591–1593 cm−1region indicative of the chloroaniline moiety. Numerous bands in the 1600–650 cm−1region provide data for the differentiation of the methoxy and dimethoxybenzyl ring substitution patterns. Thus, a combination of EI-MS and vapor phase IR allow for the differentiation and specific identification of each regioisomer in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call