Abstract

BackgroundPremature ovarian insufficiency (POI) is a common disease in reproductive women. The pathogenesis of POI is not clear, although it is known that it involves the disorder of oocyte differentiation and development. The introduction of reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) offers a unique opportunity to study many aspects of POI from cell differentiation in vitro that could ultimately lead to novel drug development and testing to help treat the disorder.MethodsThe fibroblasts from POI patients, including fragile X syndrome, abnormal karyotype (45, X; 45, X/46, XX; 45, XO and 47, XXX), and the gene mutation (FIGLA and GDF9) were reprogrammed to pluripotency status by retroviral transduction using defined factors. The morphology, growth characteristics, gene expression profiles, epigenetic status, and in vitro and in vivo differentiation potential of the POI-1-iPSCs (from fragile X syndrome) were analyzed. Then, POI-1-iPSCs were induced to differentiation into primordial germ cells (PGCs) with DNA methyltransferase inhibitors.ResultsThe iPSCs were successfully generated from POI patients’ fibroblasts. The formed iPS clones have the same characteristics of human ESCs. POI-1-iPSCs were successfully generated with germline competence. The POI-1-iPSCs, with genotypes of fragile X syndrome, can be induced to differentiation into PGCs with high efficiency under our culture system by DNA demethylation. This study proved that disease-specific iPSC lines derived from POI patients could be generated and successfully differentiated into PGCs.ConclusionsWe established some novel, systemic cell models for the studying of the pathogenesis of POI patients. Second, DNA demethylation may accelerate the induction of human PGCs from iPSCs in vitro and the conclusion needs further exploration. This represents an important step in the novel approach for the study of the pathophysiology and potential egg resource for POI patients.

Highlights

  • Premature ovarian insufficiency (POI) is a complex disorder that seriously affects the fertility of women of reproductive age

  • The establishment of induced pluripotent stem cells (iPSCs) from the adult cells of POI patients Adult epithelial cells in urine were used for reprogramming under informed consent

  • The POI-iPSCs became compact with continuous culture (Fig. 1c)

Read more

Summary

Introduction

Premature ovarian insufficiency (POI) is a complex disorder that seriously affects the fertility of women of reproductive age. Exploring the cause of POI requires an understanding of the oocyte maturation process and how the inherited genetic defect affects this process. Very few POI studies have focused on the oocyte maturation process. Premature ovarian insufficiency (POI) is a common disease in reproductive women. The pathogenesis of POI is not clear, it is known that it involves the disorder of oocyte differentiation and development. The introduction of reprogramming human somatic cells into induced pluripotent stem cells (iPSCs) offers a unique opportunity to study many aspects of POI from cell differentiation in vitro that could lead to novel drug development and testing to help treat the disorder

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.