Abstract

Plasmodium parasites, the causative agents of malaria, possess a complex lifecycle; however, the mechanisms of gene regulation involved in the cell-type changes remain unknown. Here, we report that gametocyte sucrose nonfermentable2 (gSNF2), an SNF2-like chromatin remodeling ATPase, plays an essential role in the differentiation of male gametocytes. Upon disruption of gSNF2, male gametocytes lost the capacity to develop into gametes. ChIP-seq analyses revealed that gSNF2 is widely recruited upstream of male-specific genes through a five-base, male-specific cis-acting element. In gSNF2-disrupted parasites, expression of over a hundred target genes was significantly decreased. ATAC-seq analysis demonstrated that decreased expression of these genes correlated with a decrease of the nucleosome-free region upstream of these genes. These results suggest that global changes induced in the chromatin landscape by gSNF2 are the initial step in male differentiation from early gametocytes. This study provides the possibility that chromatin remodeling is responsible for cell-type changes in the Plasmodium lifecycle.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.