Abstract

Nitrogen fixation by diazotrophic bacteria is a significant source of new nitrogen in salt marsh ecosystems. Recent studies have characterized the physiological and phylogenetic diversity of oxygen-utilizing diazotrophs isolated from the rhizoplanes of spatially separated intertidal macrophyte habitats. However, there is a paucity of information regarding the traits encoded by and the diversity of plasmids occurring in this key ecological functional group. Five-hundred and twenty-one isolates cultivated from the rhizoplanes of Juncus roemarianus, Spartina patens and different growth forms (short-form and tall-form) of Spartina alterniflora were screened for the presence of plasmids. One-hundred and thirty-four diazotrophs carrying plasmids that ranged in size from 2 to >100 kbp were identified. The majority of the marine bacteria contained one plasmid. Diazotrophs from the short-form S. alterniflora rhizoplane contained significantly fewer plasmids relative to isolates from tall-form S. alterniflora, J. roemarianus and S. patens. Although some plasmids exhibited homology to a nifH gene probe, the majority of the plasmids were classified as cryptic. Two oligonucleotide primers were developed to facilitate genotypic typing of the endogenously isolated marine plasmids by the randomly amplified polymorphic DNA (RAPD)-PCR technique. These primers proved to be more effective than 21 commercially available primers tested to generate RAPD-PCR patterns. Analysis of the RAPD-PCR patterns indicated as many as 71 different plasmid genotypes occurring in diazotroph bacterial assemblages within and between the four different salt marsh grass rhizoplane habitats investigated in this study.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call