Abstract

The cell line PC12, derived from a rat pheochromocytoma, has served as a model for studies on the mechanism of action of nerve growth factor, as well as for the exploration of neuronal differentiation in general. When treated with nanomolar concentrations of nerve growth factor, these neoplastic chromaffin-like cells stop dividing and acquire, for all intents and purposes, the phenotype of mature sympathetic neurons. This phenotype is characterized by the extensive outgrowth of electrically excitable neurites, the ability to form functional synapses, and the acquisition of a number of biochemical markers. Treatment of PC12 cells with retroviral vectors encoding the K-ras, the N-ras, or the v-src oncogenes also produces a marked morphological differentiation very similar to that seen upon treatment with nerve growth factor. Treated cells stop dividing and develop an extensive network of neurites. It has recently been shown that PC12 cells differentiated with v-src, while resembling, morphologically, those treated with nerve growth factor, differ substantially in the biochemical characteristics normally associated with nerve growth factor-induced differentiation. Cells infected with K-ras also develop a neurite network similar to that seen after treatment with nerve growth factor. In addition, such cells develop tetanus toxin-binding sites and saxitoxin-binding sites, as do cells treated with nerve growth factor. Decreases in the binding of epidermal growth factor and in the activity of calpain also occur and these, as well, are characteristic of nerve growth factor-treated cells. But the adhesive properties of cells infected with K-ras are different than those of nerve growth factor-treated cells, and the former do not show an increase in the NILE glycoprotein. Finally, K-252a, an inhibitor of the actions of nerve growth factor on PC12 cells, has no effect on the neurite outgrowth produced by infection with K-ras. Thus, many of the key markers of nerve growth factor-induced differentiation of PC12 cells also appear upon differentiation with K-ras, but there are, nevertheless, some crucial differences in the properties of these two sets of cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.