Abstract

Demyelination contributes to the functional deficits after spinal cord injury (SCI). Therefore, remyelination may be an important strategy to facilitate repair after SCI. Oligodendrocyte precursor cells (OPCs) are immature oligodendrocytes and can differentiate into myelin-forming cells of central nervous system under certain conditions. OPC transplantation is an attractive approach for the treatment of demyelinating diseases. In this study, we transplanted OPCs expressing green fluorescent protein (GFP-OPCs) into normal and injured rat spinal cords to evaluate the differentiation of transplanted OPCs in vivo. Unfortunately, the grafted GFP-OPCs, in spinal cord whether normal or injured, were all differentiated into astrocytes, but not oligodendrocytes. Our further study indicated that inflammatory environment might not be the key factor influencing the differentiation of OPCs. Some spinal cord components, such as bone morphogenetic proteins (BMPs), were the major factors that induced OPCs to differentiate into astrocytes. The three types of BMP receptor (BMPRIA, IB and II) could all be detected in OPCs, and the astroglial differentiation of OPCs induced by spinal cord homogenate extract (SCHE) in vitro could be blocked partly by noggin, an antagonist of BMP. These results suggested that the BMPR signal transduction pathway might be one of the key factors which determine the differentiation direction of engrafted OPCs in spinal cord.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.