Abstract

The easily accessible mesenchymal stem cells in the Wharton's jelly of human umbilical cord tissue (hUCMSCs) have excellent proliferation and differentiation potential, but it remains unclear whether hUCMSCs can differentiate into odontoblasts. In this study, mesenchymal stem cells were isolated from the Wharton's jelly of human umbilical cord tissue using the simple method of tissue blocks culture attachment. UCMSC surface marker expression was then evaluated for the isolated cells using flow cytometry. The third-passage hUCMSCs induced by conditioned medium from developing tooth germ cells (TGC-CM) displayed high alkaline phosphatase (ALP) levels (P < 0.001), an enhanced ability to proliferate (P < 0.05), and the presence of mineralized nodules. These effects were not observed in cells treated with regular medium. After induction of hUCMSCs, the results of reverse transcriptional polymerase chain reaction (PCR) indicated that the dentin sialophosphoprotein (DSPP) and dentin matrix protein 1 (DMP1) genes were significantly tested. Additionally, dentin sialoprotein (DSP) and DMP1 demonstrated significant levels of staining in an immunofluorescence analysis. In contrast, the control cells failed to display the characteristics of odontoblasts. Taken together, these results suggest that hUCMSCs can be induced to differentiate into odontoblast-like cells with TGC-CM and provide a novel strategy for tooth regeneration research.

Highlights

  • Tooth loss, caused by dental caries, periodontal diseases, injuries, or a variety of genetic disorders, is one of the most common human diseases

  • Our data demonstrate for the first time that umbilical cord (UC)-derived mesenchymal stem cells (MSCs) could potentially differentiate into odontoblast-like cells in an odontogenic microenvironment in vitro; we explore an optimal alternative tissue source of MSCs for dental regeneration engineering

  • The cells were negative for hematopoietic lineage markers (CD34, CD45). These results indicated that the isolated cells in this study represented hUCMSCs and were not mixed with cells of hematopoietic origin (Figure 2(a))

Read more

Summary

Introduction

Tooth loss, caused by dental caries, periodontal diseases, injuries, or a variety of genetic disorders, is one of the most common human diseases. Numerous studies have addressed stem cell-based tooth tissue engineering strategies aimed at reconstituting a bioengineered tooth to treat tooth loss. With their significant capacity for self-renewal and pluripotent differentiation, mesenchymal stem cells (MSCs) are used as an important type of seed cells for tissue engineering and regenerative medicine. The proliferative capacity and differentiation potential of BM cells decline with increasing age [7, 8].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call