Abstract

Charcot-Marie-Tooth disease type 1A (CMT1A) is the most common inherited motor and sensory neuropathy, and is caused by duplication of PMP22, alterations of which are a characteristic feature of demyelination. The clinical phenotype of CMT1A is determined by the degree of axonal loss, and patients suffer from progressive muscle weakness and impaired sensation. Therefore, we investigated the potential of Schwann-like cells differentiated from human tonsil-derived stem cells (T-MSCs) for use in neuromuscular regeneration in trembler-J (Tr-J) mice, a model of CMT1A. After differentiation, we confirmed the increased expression of Schwann cell (SC) markers, including glial fibrillary acidic protein (GFAP), nerve growth factor receptor (NGFR), S100 calcium-binding protein B (S100B), glial cell-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF), which suggests the differentiation of T-MSCs into SCs (T-MSC-SCs). To test their functional efficiency, the T-MSC-SCs were transplanted into the caudal thigh muscle of Tr-J mice. Recipients’ improved locomotive activity on a rotarod test, and their sciatic function index, which suggests that transplanted T-MSC-SCs ameliorated demyelination and atrophy of nerve and muscle in Tr-J mice. Histological and molecular analyses showed the possibility of in situ remyelination by T-MSC-SCs transplantation. These findings demonstrate that the transplantation of heterologous T-MSC-SCs induced neuromuscular regeneration in mice and suggest they could be useful for the therapeutic treatment of patients with CMT1A disease.

Highlights

  • Charcot-Marie-Tooth (CMT) disease results from inherited neuropathies caused by over 50 different mutation genes [1], and the type of disease is classified according to those genes

  • The T-MSCs (Figure 1A,C,E) were cultured for 16 days to allow their terminal differentiation into T-MSC-Schwann cell (SC) (Figure 1B,D,F), when they displayed elongated bi- or tripolar spindle-shaped morphology and thinner cytoplasmic extensions, as previously reported [18]

  • To determine the phenotypes of the T-MSC-SCs, we examined for SC and neurotrophic markers, such as glial fibrillary acidic protein (GFAP), S100 calcium-binding protein B (S100B), nerve growth factor receptor (NGFR), glial cell-derived neurotrophic factor (GDNF), and brain-derived neurotrophic factor (BDNF) using immunostaining (Figure 1C–F) and real-time PCR (Figure 1G–K)

Read more

Summary

Introduction

Charcot-Marie-Tooth (CMT) disease results from inherited neuropathies caused by over 50 different mutation genes [1], and the type of disease is classified according to those genes. Type 1A is the most common type, caused by a mutation in the gene encoding peripheral myelin protein 22 (PMP22) resulting in altered gene expression and structural defects. Axonal dysfunction in peripheral nerves is a common feature of the CMT disease type 1A (CMT1A) forms, resulting in muscle weakness, gait abnormalities, and foot deformities, for which there are no pharmacological treatments [2,3,4]. A point mutation, L16P (leucine 16 to proline), in PMP22 underlies a form of human CMT1A, and underlies the CMT1A phenotype in mice. Stem-cell transplantation can avoid these limitations and bring benefit to the process of peripheral nerve regeneration [6]. Various types of stem cells, such as embryonic stem cells [7,8], induced pluripotent stem cells [9], neural stem cells [10], bone marrow-derived stem cells (BM-MSCs) [11,12], adipose-derived stem cells (Ad-MSCs) [13,14], amniotic tissue-derived stem cells [15], amniotic fluid-derived stem cells [16], and umbilical cord-derived MSCs (UC-MSCs) [17] have been reported to help peripheral nerve regeneration

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call