Abstract

Fibrocytes are a distinct population of fibroblast-like progenitor cells in peripheral blood that have recently been shown to possess plasticity to differentiate along mesenchymal lineages, including commitment to myofibroblast and adipocyte cells. Here, we demonstrated that transforming growth factor (TGF) beta1 drives fibrocyte-to-myofibroblast differentiation through activating Smad2/3 and SAPK/JNK MAPK pathways, which in turn stimulates alpha-smooth muscle actin expression. We determined that SAPK/JNK signaling acts in a positive feedback loop to modulate Smad2/3 nuclear availability and Smad2/3-dependent transcription. Conversely, fibrocyte-to-adipocyte differentiation is driven by the peroxisome proliferator-activated receptor (PPAR) gamma agonist troglitazone, which is associated with cytoplasmic lipid accumulation and induction of aP2. Treatment with troglitazone also disrupted TGF beta 1-activated SAPK/JNK signaling, leading to decreased Smad2/3 transactivation activity and alpha-smooth muscle actin expression. Interestingly, TGF beta 1 was demonstrated to have reciprocal inhibition on fibrocyte differentiation to adipocytes. By activating SAPK/JNK signaling, which is normally suppressed during adipogenesis, PPARgamma-dependent transactivation activity and induction of aP2 expression were disrupted. Taken together, within the context of the local microenvironmental niche, the delicate balance of PPARgamma and TGF beta 1 activation drives the selection of an adipocyte or myofibroblast differentiation pathway through SAPK/JNK signaling.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.