Abstract

Magnesium homeostasis in HL-60 promyelocytic leukemia cells was compared to that in neutrophyl-like HL-60 cells obtained by 1.3% DMSO treatment. Magnesium homeostasis was studied by the characterization of magnesium efflux, the identification of intracellular magnesium pools, and the regulation of intracellular ionized Mg2+. In both undifferentiated and neutrophyl-like HL-60 cells, magnesium efflux occurred via the Na-Mg antiporter which was inhibited by imipramine and stimulated by db cAMP and forskolin. Receptor-mediated signals such as ATP, IFN-alpha, or PGE1, which can trigger cAMP-dependent magnesium efflux, were ineffective in undifferentiated HL-60 cells but induced 60-70% increase of magnesium efflux in neutrophyl-like HL-60 cells. Selective membrane permeabilization by the cation ionophore A23187 induced a large magnesium release when cells were treated with rotenone. In both cell populations, the addition of glucose to rotenone-treated cells restored magnesium release to the control level. Permeabilization by 0.005% digitonin provoked the release of 90% cell total magnesium in both cell types. Intracellular [Mg2+]i was 0.15 and 0.26 mM in undifferentiated and neutrophyl-like HL-60 cells, respectively. Stimuli that triggered magnesium efflux, such as db cAMP in undifferentiated and IFN-alpha in neutrophyl-like HL-60 cells, induced a slow but consistent increase of [Mg2+]i which was independent from Ca2+ movements. Overall, these data indicate that magnesium homeostasis is regulated by receptor-mediated magnesium efflux which was modified during differentiation of HL-60 cells. Stimulation of magnesium efflux is paralleled by an increase of [Mg2+]i which reflects a release of magnesium from the bound cation pool.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.