Abstract

Prediction and recognition of happy and sad emotional states play important roles in many aspects of human life. In this work, an attempt has been made to classify them using Electrodermal Activity (EDA). For this, EDA signals are obtained from a public database and decomposed into tonic and phasic components. Features, namely Hjorth and higher-order crossing, are extracted from the phasic component of the signal. Further, these extracted features are fed to four parametric classifiers, namely, linear discriminant analysis, logistic regression, multilayer perceptron, and naive bayes for the classification. The results show that the proposed approach can classify the dichotomous happy and sad emotional states. The multilayer perceptron classifier is accurate (85.7%) in classifying happy and sad emotional states. The proposed method is robust in handling the dynamic variation of EDA signals for happy and sad emotional states. Thus, it appears that the proposed method could be able to understand the neurological, psychiatrical, and biobehavioural mechanisms of happy and sad emotional states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.