Abstract

The convergence of the multi-layered continental lithospheres with variable and complex thermal and rheological properties results in various modes of continental collision with distinct deformation behavior of the lithospheric mantle. Using high-resolution thermo-mechanical numerical models, we systematically investigated the effects of crustal rheological strength and the convergence rate on the continental subduction mode. The model results reveal three basic modes of continental subduction, including slab break-off, steep subduction and continental flat-slab subduction. Whether lithospheric mantle of the overriding plate retreats or not during convergence enables the division of the first two modes into two sub-types, which are dominated by the crustal rheological strength. The mode of slab break-off develops under the conditions of low/moderate rheological strength of the continental crust and low convergence rate. In contrast, continental flat-slab subduction favors the strong crust and the high convergence rate. Otherwise, continental steep subduction occurs. The numerical results provide further implications for Geodynamics conditions and physical processes of different modes of continental collision that occur in nature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.