Abstract

Many human cell types are ciliated, including neural progenitors and differentiated neurons. Ciliopathies are characterized by defective cilia and comprise various disease states, including brain phenotypes, where the underlying biological pathways are largely unknown. Our understanding of neuronal cilia is rudimentary, and an easy-to-maintain, ciliated human neuronal cell model is absent. The Lund human mesencephalic (LUHMES) cell line is a ciliated neuronal cell line derived from human fetal mesencephalon. LUHMES cells can easily be maintained and differentiated into mature, functional neurons within one week. They have a single primary cilium as proliferating progenitor cells and as postmitotic, differentiating neurons. These developmental stages are completely separable within one day of culture condition change. The sonic hedgehog (SHH) signaling pathway is active in differentiating LUHMES neurons. RNA-sequencing timecourse analyses reveal molecular pathways and gene-regulatory networks critical for ciliogenesis and axon outgrowth at the interface between progenitor cell proliferation, polarization and neuronal differentiation. Gene expression dynamics of cultured LUHMES neurons faithfully mimic the corresponding in vivo dynamics of human fetal midbrain. In LUHMES cells, neuronal cilia biology can be investigated from proliferation through differentiation to mature neurons.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.