Abstract

The differential diagnosis of a cerebral dissecting aneurysm (DA) and a hemorrhagic saccular aneurysm (SA) often depends on the intraoperative findings; thus, improved non-invasive imaging diagnosis before surgery is essential to distinguish between these two aneurysms, in order to provide the correct formulation of surgical procedure. We aimed to build a radiomic model based on high-resolution vessel wall magnetic resonance imaging (VW-MRI) and a machine-learning algorithm. In total, 851 radiomic features from 146 cases were analyzed retrospectively, and the ElasticNet algorithm was used to establish the radiomic model in a training set of 77 cases. A clinico-radiological model using clinical features and MRI features was also built. Then an integrated model was built by combining the radiomic model and clinico-radiological model. The area under the ROC curve (AUC) was used to quantify the performance of models. The models were evaluated using leave-one-out cross-validation in a training set, and further validated in an external test set of 69 cases. The diagnostic performance of experienced radiologists was also assessed for comparison. Eight features were used to establish the radiomic model, and the radiomic model performs better (AUC = 0.831) than the clinico-radiological model (AUC = 0.717), integrated model (AUC = 0.813), and even experienced radiologists (AUC = 0.801). Therefore, a radiomic model based on VW-MRI can reliably be used to distinguish DA and hemorrhagic SA, and, thus, be widely applied in clinical practice.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call