Abstract

Nkx2-5 gene mutations cause cardiac abnormalities, including deficits of function in the atrioventricular conduction system (AVCS). In the chick, Nkx2-5 is elevated in Purkinje fiber AVCS cells relative to working cardiomyocytes. Here, we show that Nkx2-5 expression rises to a peak as Purkinje fibers progressively differentiate. To disrupt this pattern, we overexpressed Nkx2-5 from embryonic day 10, as Purkinje fibers are recruited within developing chick hearts. Overexpression of Nkx2-5 caused inhibition of slow tonic myosin heavy chain protein (sMHC), a late Purkinje fiber marker but did not affect Cx40 levels. Working cardiomyocytes overexpressing Nkx2-5 in these hearts ectopically up-regulated Cx40 but not sMHC. Isolated embryonic cardiomyocytes overexpressing Nkx2-5 also displayed increased Cx40 and suppressed sMHC. By contrast, overexpression of a human NKX2-5 mutant did not effect these markers in vivo or in vitro, suggesting one possible mechanism for clinical phenotypes. We conclude that a prerequisite for normal Purkinje fiber maturation is precise regulation of Nkx2-5 levels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call