Abstract

Undifferentiated bipolar CG-4 cell line oligodendrocytes provide a model system for the O-2A progenitor cell from which oligodendrocytes are derived both in vivo and in vitro. The exchange of neuroblastoma conditioned basal media for basal media causes differentiation of undifferentiated bipolar CG-4 cells into multipolar oligodendrocyte-like cells whilst replacement with basal media containing 20% foetal bovine serum favours the formation of type-2 astrocyte-like cells. Here, we demonstrate that activation of these differentiation pathways correlates with distinct changes both in cell metabolism and in signal transduction. Exchange of neuroblastoma conditioned media for basal media correlates with stimulation of basal metabolic activity, reduced phosphorylation of p44/42 MAP kinase and reduced phosphorylation of the transcription factor CREB. In contrast, differentiation with basal medium containing 20% foetal bovine serum (FBS), into type 2 astrocyte-like cells, correlates with reduction in basal metabolic activity, increased phosphorylation of p44/42 MAP kinase and increased phosphorylation of the transcription factor CREB. Inhibition of protein kinase C blocked both the metabolic and morphological changes associated with differentiation towards mature multipolar oligodendrocyte-like cells. Inhibition of PKA and MEK did not effect metabolic activity. The rapid return of neuroblastoma conditioned basal media to cells treated with basal media, increased phosphorylation of CREB and MAP kinase. These results demonstrate that protein kinase C and p44/42 MAP kinase signalling pathways are modulated during bipolar CG-4 cell differentiation and demonstrate that the transcription factor CREB may play a pivotal role in differentiation along oligodendrocyte-or astrocyte-lineages.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.