Abstract

Engineering autologous adipose constructs from cell culture is a promising strategy to overcome limitations of conventional soft-tissue implants. A methodology is presented to experimentally determine and mathematically model the differentiation kinetics of in vitro 3T3-L1 preadipocyte cultures that can aid in construct design. Relative rates of morphological and interfacial events during adipogenesis were compared. Model results suggest that maturation of an intermediate multilocular phenotype was the rate-limiting step in morphological differentiation and had an intrinsic rate of 0.012 day(-1). Dislodgment of multilocular fat cells was the primary mechanism of cell loss during adipogenesis. The maximum rate of lipid droplet nucleation was predicted to precede that of coalescence by 10 days and to be three times faster. Coalescence probability was estimated to decrease from 33 to 11% for 4- and 8-microm-diameter droplets, respectively. Fluid drainage and the cytoskeleton between droplets could have impeded coalescence. The kinetic analysis suggests that droplet ripening was the dominant mechanism of lipid production. Applications of this research include engineering of an adipose construct and predicting surgical outcome of patients requiring soft-tissue augmentation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.