Abstract

Extracellular acidification is a hallmark of a number of debilitating pathologies including cancer, ischemia and inflammation. We have recently shown that in human granule precursor tumour cells a fall in extracellular pH triggers increases in intracellular Ca 2+ concentration through activation of G-protein coupled proton-sensing receptors coupling to phospholipase C. This pH-dependent rise in cytosolic Ca 2+ led to activation of the extracellular signal-regulated kinase ERK, providing a mechanistic explanation of how extracellular acidification can promote tumour growth. We now find that differentiation of granule precursor tumour cells profoundly affects their ability to respond to extracellular acidification with gene transcription. Differentiating cells have a lower Ca 2+ release probability from intracellular Ca 2+ stores upon acidification and cells that respond have a significantly smaller and slower Ca 2+ signal than proliferating cells. Importantly, Ca 2+ release in differentiating cells fails to evoke ERK phosphorylation. This altered responsiveness of differentiating cells is not due to reduced proton-sensing receptor expression or diminished Ca 2+ store content. Rather, our results suggest that in differentiating cells, the proton-sensing receptor couples less effectively to phospholipase C activation and IP 3 formation. Hence, the ability of human granule cells to respond to extracellular acidification by generating Ca 2+ signals and ERK activation is state-dependent, being lost upon differentiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.