Abstract

Issues of differentiation-free multiswitching neuroadaptive tracking control of strict-feedback systems are presented. It mainly consists of a set of nominal adaptive neural network compensators plus an auxiliary switched linear controller that ensures the semiglobally/globally ultimately uniformly bounded stability when the unknown nonlinearities are locally/globally linearly bounded, respectively. In particular, the so-called explosion of complexity is annihilated in two steps. First, a set of first-order low-pass filters are constructed for solving such a problem in the nominal neural compensators. In contrast to most existing dynamic surface control-based schemes, bounded stability of the filter dynamics is ensured by virtue of the localness and hence boundedness of the neural compensators. Separation of controller-filter pairs is thus achieved in this paper. Next, an auxiliary switched linear state feedback control is synthesized to further solve such a problem in the nonneural regions. Besides being differentiation-free, such an approach provides more flexibility for meeting various control objectives at a time. An earlier proposed smooth switching algorithm is also incorporated to tackle the control singularity problem. Finally, simulation works are presented to demonstrate the validity of the proposed scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call