Abstract

Expression of the new 17beta-hydroxysteroid dehydrogenase (HSD), type 10 (17beta-HSD-10), formerly known as endoplasmic reticulum-associated amyloid-binding protein, has been investigated in the testes of various mammals under normal and perturbed conditions. Results show that 17beta-HSD-10 is a major product of both fetal and adult-type Leydig cells. In the former, protein persists until late in postnatal development; and in the short-day hamster model, it does not disappear when Leydig cells involute. During puberty in the rat, immunohistochemical staining for 17beta-HSD-10 in adult-type Leydig cells first becomes evident on d 20, increasing to maximal staining intensity by d 35. In the rat, but not in the mouse or any other species examined, there is also staining in late spermatids. Examination of testes from rats subjected to perinatal treatment with either a GnRH antagonist or low and high doses of diethylstilbestrol revealed that expression of 17beta-HSD-10 follows closely Leydig cell differentiation status, correlating with 3beta-HSD expression in a previous study. In aging (23 months) rat testes, Leydig cell (but not germ cell) immunostaining for 17beta-HSD-10 is markedly reduced. 17beta-HSD-10 seems to preferentially convert 3alpha-androstanediol into dihydrotestosterone, and estradiol to estrone. Thus, perinatal expression of this enzyme in fetal Leydig cells may contribute to protecting these cells from estrogens and encourage androgen formation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.