Abstract

BackgroundInner ear hair cells as mechanoreceptors are extremely important for hearing. Defects in hair cells are a major cause of deafness. Induced pluripotent stem cells (iPSCs) are promising for regenerating inner ear hair cells and treating hearing loss. Here, we investigated migration, differentiation, and synaptic connections of transplanted otic epithelial progenitors (OEPs) derived from human iPSCs in mouse cochlea.MethodsHuman urinary cells isolated from a healthy donor were reprogramed to form iPSCs that were induced to differentiate into OEPs and hair cell-like cells. Immunocytochemistry, electrophysiological examination, and scanning electron microscopy were used to examine characteristics of induced hair cell-like cells. OEP-derived hair cell-like cells were cocultured with spiral ganglion neurons (SGNs), and the markers of synaptic connections were detected using immunocytochemistry and transmission electron microscope. In vivo, OEPs derived from iPSCs were transplanted into the cochlea of mice by injection through the round window. Migration, differentiation, and synaptic connections of transplanted cells were also examined by thin cochlear sectioning and immunohistochemistry.ResultsThe induced hair cell-like cells displayed typical morphological characteristics and electrophysiological properties specific to inner hair cells. In vitro, OEP-derived hair cell-like cells formed synaptic connections with SGNs in coculture. In vivo, some of the transplanted cells migrated to the site of the resident hair cells in the organ of Corti, differentiated into hair cell-like cells, and formed synaptic connections with native SGNs.ConclusionsWe conclude that the transplantation of OEPs is feasible for the regeneration of hair cells. These results present a substantial reference for a cell-based therapy for the loss of hair cells.

Highlights

  • Inner ear hair cells as mechanoreceptors are extremely important for hearing

  • reverse transcription-polymerase chain reaction (RT-PCR) analysis confirmed enhanced expression of the endogenous pluripotent genes SOX2, KLF4, OCT4, and c-MYC in ESC-like colonies compared with that in urinary cells, indicating that transduction of exogenous genes could activate the expression of endogenous pluripotent genes (Fig. 1a)

  • Sections of teratoma stained with hematoxylin and eosin confirmed the presence of all three germ layers formed by the differentiation of ESC-like colonies: gut epithelium accounted for endoderm; cartilage for mesoderm; and neural rosettes and retinal pigment for ectoderm (Fig. 1c)

Read more

Summary

Introduction

Inner ear hair cells as mechanoreceptors are extremely important for hearing. Defects in hair cells are a major cause of deafness. Induced pluripotent stem cells (iPSCs) are promising for regenerating inner ear hair cells and treating hearing loss. Hearing loss is an important sensory impairment in humans. It causes significant health burden on society since it impedes speech and language development and decreases the quality of life. Sensorineural hearing loss (SNHL) results from loss or damage to the hair cells (the sensorineural element) in the inner ear. It is a common form of hearing impairment worldwide, affecting millions of people. There is a need to develop new therapeutic methods to aid millions of people suffering from hearing impairment. Advances in somatic cell programing technology offer a glimmer of hope for developing new therapies to treat

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call