Abstract
Infrared-pump, electronic-probe (IPEP) spectroscopy is used to measure heat flow into and out of CdSe nanocrystals suspended in an organic solvent, where the surface ligands are initially excited with an infrared pump pulse. Subsequently, the heat is transferred from the excited ligands to the nanocrystals and in parallel to the solvent. Parallel heat transfer in opposite directions uniquely enables us to differentiate the thermal conductances at the nanocrystal/ligand and ligand/solvent interfaces. Using a novel solution to the heat diffusion equation, we fit the IPEP data to find that the nanocrystal/ligand conductances range from 88 to 135 MW m-2 K-1 and are approximately 1 order of magnitude higher than the ligand/solvent conductances, which range from 7 to 26 MW m-2 K-1. Transient nonequilibrium molecular dynamics (MD) simulations of nanocrystal suspensions agree with IPEP data and show that ligands bound to the nanocrystal by bidentate bonds have more than twice the per-ligand conductance as those bound by monodentate bonds.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.