Abstract

The study presented the effects of modulating the hydrophobic interaction and disulfide bond on the properties of myofibrillar protein (MP) emulsion gels at high temperature (95 °C) and the differentiation on the contribution of non-covalent (hydrophobic interaction) and covalent intermolecular interactions (disulfide bond) to the properties of interfacial protein films were also determined. The hydrophobic interactions among MP were modulated by the addition of octenyl succinic anhydride (OSA), and the disulfide bonds were modulated by the SH/SS exchange reactions mediated by GSH. The results showed that the MP emulsion gel properties at 95 °C were improved by modulating the hydrophobic interaction or disulfide bonds, and the dynamic interfacial adsorption of MP and dissipation quartz crystal microbalance experiments showed the interfacial adsorption pattens of protein were also changed. In addition, the hydrophobic interactions putted emphasis on improving the gel matrix, whereas the disulfide bonds focused on increasing the stiffness of interfacial protein films.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call