Abstract

AbstractSupercell storms are the most prolific producers of violent tornadoes, though only a fraction of supercells produce tornadoes. Past research into the differences between tornadic and nontornadic supercells have provided some insights but are of little utility to a real‐time warning decision process. Operational weather radars provide consistent observations in real time, but conventional radar techniques have not been able to effectively distinguish between tornadic and nontornadic supercells. After the national radar network upgrade to polarimetric capabilities in 2013, a polarimetric signature frequently observed in supercells is the separation of low‐level enhanced differential reflectivity ZDR and specific differential phase KDP regions. We analyzed this signature in tornadic and nontornadic supercell cases and found that, although the separation distances are similar, the separation orientations are statistically significantly different. Tornadic supercells have orientations more orthogonal to storm motion and nontornadic supercells have more parallel orientations. Possible reasons for these differences are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call