Abstract

Purpose:To test the feasibility of the phase difference enhanced (PADRE) imaging for differentiation between Alzheimer disease (AD) patients and control subjects on 3T MR imaging.Materials and Methods:Fifteen patients with AD and 10 age-matched control subjects underwent two-dimensional fast field echo imaging to obtain PADRE images on a 3T MR scanner. A double Gaussian distribution model was used to determine the threshold phase value for differentiation between the physiologic and non-physiologic iron in the cerebral cortices, and PADRE images were processed with the threshold. Using a 4-point grading system, two readers independently assessed the signal of the four cerebral cortices on PADRE images: the cuneus, precuneus, superior frontal gyrus, and superior temporal gyrus. The difference in the signals in each cortex between the AD patients and age-matched control subjects was determined by using Mann–Whitney U test. Inter-rater reliability was determined by Kappa analysis. We also evaluated the correlation between Mini-Mental State Examination (MMSE) score and the hypointense grade, and between disease duration and the hypointense grade using the Spearman rank correlation test.Results:The threshold phase value for differentiation between the physiologic and non-physiologic iron was −4.6% π (radian). The mean grades of the cuneus, precuneus, and superior temporal gyrus were significantly higher for the AD patients than for the control subjects (P = 0.002). Excellent inter-rater reliability was seen in the precuneus (kappa = 0.93), superior temporal gyrus (kappa = 0.94), and superior frontal gyrus (kappa = 0.93); good inter-rater reliability was observed in the cuneus (kappa = 0.75). We found a statistical correlation between MMSE score and the hypointense grade in superior temporal gyrus (STG) (P = 0.008), and no correlation between disease duration and the hypointense grade in any gyrus.Conclusion:Our results suggest the feasibility of PADRE imaging at 3T for differentiation between AD patients and control subjects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.